Imagine you are preparing your samples for PCR on a hot summer day. You have already mixed all the necessary components together, now you just have to insert your samples into the PCR machine. Suddenly your co-worker shows up and says that they need only a few minutes of your time to discuss a very important matter. As per usual a few minutes then turns into fifteen minutes. Finally, you turn to your samples and insert them into the PCR machine. A little while later it’s time to analyze the results, but for some reason, they are messy and don’t make sense. You sigh since you have wasted a perfectly good summer day, but gotten nothing out of it. So how to make sure this doesn’t happen again?
First, let’s talk about what went wrong. Presuming that there was no contamination and all the primers and PCR mix components were working properly, there was only the issue of letting your samples sit at room temperature for fifteen minutes. During that time your primers probably randomly bound to DNA templates or to each other forming primer dimers and starting non-specific amplification, because there was nothing to stop them from doing that. In the end, you ended up with lower yield and non-specific results, since part of the PCR efficiency went to amplifying unnecessary segments [1].
To avoid that the easy answer is using the hot start PCR technique. With this technique, you don’t have to worry about leaving your samples on the table while talking to a colleague or worry that once you get to the last samples the first ones might already be messed up. The main idea behind a hot start is that the reaction needs a hot start to work [1][2]. No non-specific amplification will occur during the reaction setup since the specially modified DNA polymerase won’t work until heated at 95 °C in the PCR machine [1][2]. So using the hot start PCR technique means that not only can you work calmly on your samples at a room temperature, but you will also end up with higher yields, better specificity, and sensitivity [1][2].
For your convenience, most Solis BioDyne PCR and qPCR mixes already contain reagents required for the hot start. We use chemical and oligo hot start methods to keep our enzymes inactive during reaction setup. In addition, due to Stability TAG technology, all our enzymes and master mixes have enhanced stability at room temperature with no activity loss for up to 1 month, so you don’t have to worry about not using ice while preparing your samples. Also, be sure to check out our SolisFAST® line products that are not only thermostable but so fast that you can repeat your perfect result and still have time left to enjoy the summer.
Every company has to start from somewhere. There can either be an “aha” moment - a sudden spark of inspiration that sets everything in motion. Other times it can happen gradually with ideas coming and going until something bigger grows out of all this brainstorming. For Solis BioDyne, it was the latter. As we celebrate 30 years since our founding, we think it’s the perfect time to share our origin story with you.
Have you ever thought about doing a PCR experiment, but you are not quite sure what product to use? Or the product you have chosen doesn’t work as well as it should and you are looking for an alternative? We are here to help you out with some recommendations from fellow scientists based on different application possibilities.
For 10 years now, on the 11th of February, we celebrate the women and girls who have chosen to follow the path of science. We believe giving everyone a chance to do what they love is important, and it doesn’t matter what gender a person is. In Solis BioDyne, 66% of our employees and 75% of our scientists are women and they are absolutely amazing in their work.
To advance innovation in synthetic biology we decided to help young and talented scientists from Lund University with their Methane RemOOver project. Their goal is the reduction of methane emissions from cows using a synthetically engineered microorganism. With this idea, they also participated in iGEM competition.