Crystal structure of wild-type bovine pancreatic ribonuclease A. From the Protein Data Bank.
[1] Arraiano, C. M., Andrade, J. M., Domingues, S., Guinote, I. B., Malecki, M., Matos, R. G, Moreira, R. N., Pobre, V., Reis, F. P., Saramago, M.; Silva, I. J., Viegas, S. C. (2010). The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiology Reviews, 34(5), 883–923, https://doi.org/10.1111/j.1574-6976.2010.00242.x
[2] Snow, S., Bacon, E., Bergeron, J., Katzman, D., Wilhelm, A., Lewis, O., Syangtan, D., Calkins, A.; Archambault, L., Anacker, M. L., Schlax, P. J. (2020). Transcript decay mediated by RNase III in Borrelia burgdorferi. Biochemical and Biophysical Research Communications, 529(2), 386–391. doi:10.1016/j.bbrc.2020.05.201
[3] Wellner, K., Betat, H., Mörl, M. (2018). A tRNA's fate is decided at its 3′ end: Collaborative actions of CCA-adding enzyme and RNases involved in tRNA processing and degradation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1861(4), 433-441. doi: 10.1016/j.bbagrm.2018.01.012.
[4] Kang, S. O., Caparon, M. G., Cho, K. H. (2010). Virulence Gene Regulation by CvfA, a Putative RNase: the CvfA-Enolase Complex in Streptococcus pyogenes Links Nutritional Stress, Growth-Phase Control, and Virulence Gene Expression. Infection and Immunity, 78(6), 2754–2767. doi:10.1128/IAI.01370-09
[5] Hartmann, E., Hartmann, R.K. (2003). The enigma of ribonuclease P evolution. Trends in Genetics, 19(10), 561-569. https://doi.org/10.1016/j.tig.2003.08.007
[6] Tomecki, R. & Dziembowski, A. (2010). Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. RNA, 16(9), 1692–1724. https://doi.org/10.1261/rna.2237610
[7] Ming Li, W., Barnes, T., Lee, C. H. (2010). Endoribonucleases – enzymes gaining spotlight in mRNA metabolism., 277(3), 627–641. doi:10.1111/j.1742-4658.2009.07488.x
[8] Murchison, E.P. (2013). RNAases. In S. Maloy, K. Huges (Ed.). Brenner's Encyclopedia of Genetics (Second Edition, pp. 270). Academic Press. https://doi.org/10.1016/B978-0-12-374984-0.01355-3.
[9] Beintema J. J. & van der Laan J. M. (1986). Comparison of the structure of turtle pancreatic ribonuclease with those of mammalian ribonucleases. FEBS Lett, 194(2), 338-42. doi: 10.1016/0014-5793(86)80113-2.
[10] Gotte, G. & Menegazzi, M. (2019). Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Frontiers in immunology, 10, 2626. https://doi.org/10.3389/fimmu.2019.02626.
[11] Gutte, B. & Merrifield, R. B. (1971), "The Synthesis of Ribonuclease A", The Journal of Biological Chemistry, 246 (6), 1922–1941. https://doi.org/10.1016/S0021-9258(18)62396-8.
[12] Kresge, N., Simoni, R.D., Hill, R.L. (2006). The Solid Phase Synthesis of Ribonuclease A by Robert Bruce Merrifield. Journal of Biological Chemistry, 281(26): e21-e23. https://doi.org/10.1016/S0021-9258(20)55702-5.
[13] Rudd, P. M., Joao, H. C., Coghill, E., Fiten, P., Saunders, M. R., Opdenakker, G., Dwek, R. A. (1994). Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry, 33(1), 17–22. doi:10.1021/bi00167a003
[14] Arnold U., Schierhorn A., Ulbrich-Hofmann R. (1999). Modification of the unfolding region in bovine pancreatic ribonuclease and its influence on the thermal stability and proteolytic fragmentation. Eur J Biochem, 259(1-2), 470-5. doi: 10.1046/j.1432-1327.1999.00059.x.
[15] Court, D. L., Gan, J., Liang, Y. H., Shaw, G. X., Tropea, J. E., Costantino, N., Waugh, D. S., & Ji, X. (2013). RNase III: Genetics and function; structure and mechanism. Annual review of genetics, 47, 405–431. https://doi.org/10.1146/annurev-genet-110711-155618
[16] Cerritelli, S. M. & Crouch, R. J. (2009). Ribonuclease H: the enzymes in eukaryotes. The FEBS journal, 276(6), 1494–1505. https://doi.org/10.1111/j.1742-4658.2009.06908.x
[17] Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell, 3 Pt 2, 849-57. doi: 10.1016/0092-8674(83)90117-4.
[18] Robertson H. D., Altman S., Smith J. D. (1972). Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem, 247(16), 5243-51.
[19] The Nobel Prize in Chemistry 1989. The Nobel Prize. Retrieved 16 January 2022, from https://www.nobelprize.org/prizes/chemistry/1989/summary/
[20] Reiner, R., Ben-Asouli, Y., Krilovetzky, I., Jarrous, N. (2006). A role for the catalytic ribonucleoprotein RNase P in RNA polymerase III transcription. Genes & development, 20(12), 1621–1635. https://doi.org/10.1101/gad.386706
[21] Holzmann J., Frank P., Löffler E., Bennett K. L., Gerner C., Rossmanith, W. (2008). RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme. Cell, 135(3), 462-74. doi: 10.1016/j.cell.2008.09.013. PMID: 18984158.
[22] Mackie, G. (2013). RNase E: at the interface of bacterial RNA processing and decay. Nat Rev Microbiol 11, 45–57. https://doi.org/10.1038/nrmicro2930
[23] Manasherob, R., Miller, C., Kim, K., Cohen, S. N. (2012). Ribonuclease E Modulation of the Bacterial SOS Response. PLoS ONE, 7(6), e38426. doi:10.1371/journal.pone.0038426
[24] Wachi, M., Umitsuki, G., Shimizu, M., Takada, A., Nagai, K. (1999). Escherichia coli cafA Gene Encodes a Novel RNase, Designated as RNase G, Involved in Processing of the 5′ End of 16S rRNA. Biochemical and Biophysical Research Communications, 259(2), 0–488. doi:10.1006/bbrc.1999.0806
[25] Zuo, Y. & Deutscher, M. P. (2001). Exoribonuclease superfamilies: structural analysis and phylogenetic distribution. Nucleic acids research, 29(5), 1017–1026. https://doi.org/10.1093/nar/29.5.1017
[26] Briani F., Carzaniga T., Dehò G. (2016). Regulation and functions of bacterial PNPase. Wiley Interdiscip Rev RNA, 7(2):241-58. doi: 10.1002/wrna.1328.
[27] Portnoy, V., Palnizky, G., Yehudai-Resheff, S., Glaser, F., Schuster, G. (2008). Analysis of the human polynucleotide phosphorylase (PNPase) reveals differences in RNA binding and response to phosphate compared to its bacterial and chloroplast counterparts. RNA, 14(2), 297–309. https://doi.org/10.1261/rna.698108
[28] Zuo, Y. & Deutscher, M. P. (1999). The DNase activity of RNase T and its application to DNA cloning, Nucleic Acids Research, 27(20), 4077–4082, https://doi.org/10.1093/nar/27.20.4077
[29] Zuo, Y., Deutscher, M. P. (2002). The Physiological Role of RNase T Can Be Explained by Its Unusual Substrate Specificity. Journal of Biological Chemistry, 277(33), 29654–29661. doi:10.1074/jbc.m204252200
[30] Hsiao, Y. Y., Duh, Y., Chen, Y. P., Wang, Y. T., & Yuan, H. S. (2012). How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Nucleic acids research, 40(16), 8144–8154. https://doi.org/10.1093/nar/gks548
[31] Ghosh, S. & Deutscher, M. P. (1999). Oligoribonuclease is an essential component of the mRNA decay pathway. Proceedings of the National Academy of Sciences, 96(8), 4372–4377. doi:10.1073/pnas.96.8.4372
[32] Nagarajan, V. K., Jones, C. I., Newbury, S. F., & Green, P. J. (2013). XRN 5'→3' exoribonucleases: structure, mechanisms and functions. Biochimica et biophysica acta, 1829(6-7), 590–603. https://doi.org/10.1016/j.bbagrm.2013.03.005
[33] Andrew M. P., Kristina D., Catherine M., Richard D. K., Arlen W. J. (1998). Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae, Nucleic Acids Research, 26(16), 3707–3716. https://doi.org/10.1093/nar/26.16.3707
[34] Ilinskaya, O. N., & Mahmud, R. S. (2014). Ribonucleases as antiviral agents. Molecular biology, 48(5), 615–623. https://doi.org/10.1134/S0026893314040050
[35] Sato, A., Naito, T., Hiramoto, A., Goda, K., Omi, T., Kitade, Y., Sasaki, T., Matsuda, A., Fukushima, M., Wataya, Y., Kim, H.-S. (2010). Association of RNase L with a Ras GTPase-activating-like protein IQGAP1 in mediating the apoptosis of a human cancer cell-line, 277(21), 4464–4473. doi:10.1111/j.1742-4658.2010.07833.x
[36] Ramage, H. R., Connolly, L. E., Cox, J. S. (2009). Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet, 5(12):e1000767. doi: 10.1371/journal.pgen.1000767.
[37] Thompson, D. M. & Parker, R (2009). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol, 185 (1): 43–50. doi: https://doi.org/10.1083/jcb.200811119
[38] Lasch, M., Kumaraswami, K., Nasiscionyte, S., Kircher, S., van den Heuvel, D., Meister, S., Ishikawa-Ankerhold, H., & Deindl, E. (2020). RNase A Treatment Interferes With Leukocyte Recruitment, Neutrophil Extracellular Trap Formation, and Angiogenesis in Ischemic Muscle Tissue. Frontiers in physiology, 11, 576736. https://doi.org/10.3389/fphys.2020.576736
[39] Williams, J. S., Wu, L., Li, S., Sun, P., Kao, T.-H. (2015). Insight into S-RNase-based self-incompatibility in Petunia: recent findings and future directions. Frontiers in Plant Science, 6(), –. doi:10.3389/fpls.2015.00041
[40] Yakovlev, G. I., Mitkevich, V. A., Makarov, A. A. (2006). Ribonuclease Inhibitors. Molecular Biology, 40(6): 867-874. DOI: 10.1134/S0026893306060045
[41] Dickson, K. A., Haigis, M. C., Raines, R. T. (2005). Ribonuclease inhibitor: structure and function. Progress in nucleic acid research and molecular biology, 80, 349–374. https://doi.org/10.1016/S0079-6603(05)80009-1
[42] Ardelt, W., Shogen, K., Darzynkiewicz, Z. (2008). Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Current pharmaceutical biotechnology, 9(3), 215–225. https://doi.org/10.2174/138920108784567245
To advance innovation in synthetic biology we decided to help young and talented scientists from Lund University with their Methane RemOOver project. Their goal is the reduction of methane emissions from cows using a synthetically engineered microorganism. With this idea, they also participated in iGEM competition.
This year the Nobel Prize in Physiology or Medicine was awarded to Victor Ambros and Gary Ruvkun, two scientists credited with discovering microRNA and its role in post-transcriptional gene regulation. Now, 30 years after their finding, you can do microRNA experiments with ease by using our products designed to make discovering new things simple and hassle-free.
This summer we got to collaborate with a fun project organized by the MINT Campus in Germany. Not only does MINT campus inspire children and young people about these topics but it also introduces young people to sustainable, innovative developments in current research and technology.
Whether you are studying the genetic material of plants, brains or viruses, the experiment usually starts with extracting RNA from the sample material. It would be incredibly useful to get all the RNA extracted instead of it getting destroyed by the RNases before even starting the cDNA synthesis step. But how can we protect the RNA when RNases are all around us? Let’s find out!