Probably one of the hottest methods right now in the world of science is PCR (polymerase chain reaction). What started in 1983 as a simple method to amplify DNA now has many different variations and endless application possibilities. As of today, PCR reached the “golden standard” status and is the most applied method in molecular diagnostics with hard-to-beat accuracy and reliability. PCR is routinely applied in infectious disease diagnostics, but also genetic, oncology, prenatal screenings. I doubt that the PCR inventor would have ever guessed that this would become the method eventually transferring the whole healthcare industry. Today, using the same PCR reaction we are basically able to detect anything within minutes, which is a powerful and irreplaceable tool in the hands of medical professionals.
The most popular variations are probably the conventional PCR aka endpoint PCR and qPCR also known as real-time PCR or RT-PCR. To avoid any confusion we are going with endpoint PCR and qPCR.
Both of these variations have a quite similar general mechanism. First, you need purified DNA (not mandatory, but recommended). The larger part of the PCR reaction occurs in three main steps, repeated around 20-40 times.
This summer we got to collaborate with a fun project organized by the MINT Campus in Germany. Not only does MINT campus inspire children and young people about these topics but it also introduces young people to sustainable, innovative developments in current research and technology.
Whether you are studying the genetic material of plants, brains or viruses, the experiment usually starts with extracting RNA from the sample material. It would be incredibly useful to get all the RNA extracted instead of it getting destroyed by the RNases before even starting the cDNA synthesis step. But how can we protect the RNA when RNases are all around us? Let’s find out!
There aren’t many people who can lead teams as well as our Head of Quality and Product Management Eva-Maria does. She is like that red string on a mystery board connecting all the departments. If you would like to get a little closer to solving the great leadership puzzle that Eva-Maria has mastered, have a look at the following story.
On the 4th and 5th of June representatives from South Korea visited Tartu. Their primary focus was on exploring opportunities in the fields of biotechnology and medicine, seeking potential collaborators in Estonia. We had the great pleasure of meeting the delegation and sharing our knowledge on both days of the visit.